Copied to
clipboard

G = C42:D5order 160 = 25·5

1st semidirect product of C42 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:1D5, (C4xC20):9C2, (C4xD5):3C4, C4.22(C4xD5), C20.46(C2xC4), (C4xDic5):8C2, D10.8(C2xC4), (C2xC4).96D10, C5:2(C42:C2), C10.3(C4oD4), C2.2(C4oD20), D10:C4.7C2, C10.D4:17C2, (C2xC20).73C22, (C2xC10).13C23, C10.16(C22xC4), Dic5.11(C2xC4), C22.10(C22xD5), (C2xDic5).27C22, (C22xD5).17C22, C2.5(C2xC4xD5), (C2xC4xD5).10C2, SmallGroup(160,93)

Series: Derived Chief Lower central Upper central

C1C10 — C42:D5
C1C5C10C2xC10C22xD5C2xC4xD5 — C42:D5
C5C10 — C42:D5
C1C2xC4C42

Generators and relations for C42:D5
 G = < a,b,c,d | a4=b4=c5=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 216 in 76 conjugacy classes, 41 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, C2xC4, C23, D5, C10, C10, C42, C42, C22:C4, C4:C4, C22xC4, Dic5, Dic5, C20, C20, D10, D10, C2xC10, C42:C2, C4xD5, C2xDic5, C2xDic5, C2xC20, C2xC20, C22xD5, C4xDic5, C10.D4, D10:C4, C4xC20, C2xC4xD5, C42:D5
Quotients: C1, C2, C4, C22, C2xC4, C23, D5, C22xC4, C4oD4, D10, C42:C2, C4xD5, C22xD5, C2xC4xD5, C4oD20, C42:D5

Smallest permutation representation of C42:D5
On 80 points
Generators in S80
(1 49 9 44)(2 50 10 45)(3 46 6 41)(4 47 7 42)(5 48 8 43)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)
(1 34 14 24)(2 35 15 25)(3 31 11 21)(4 32 12 22)(5 33 13 23)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 71 51 61)(42 72 52 62)(43 73 53 63)(44 74 54 64)(45 75 55 65)(46 76 56 66)(47 77 57 67)(48 78 58 68)(49 79 59 69)(50 80 60 70)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(21 26)(22 30)(23 29)(24 28)(25 27)(31 36)(32 40)(33 39)(34 38)(35 37)(42 45)(43 44)(47 50)(48 49)(52 55)(53 54)(57 60)(58 59)(61 66)(62 70)(63 69)(64 68)(65 67)(71 76)(72 80)(73 79)(74 78)(75 77)

G:=sub<Sym(80)| (1,49,9,44)(2,50,10,45)(3,46,6,41)(4,47,7,42)(5,48,8,43)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,34,14,24)(2,35,15,25)(3,31,11,21)(4,32,12,22)(5,33,13,23)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(61,66)(62,70)(63,69)(64,68)(65,67)(71,76)(72,80)(73,79)(74,78)(75,77)>;

G:=Group( (1,49,9,44)(2,50,10,45)(3,46,6,41)(4,47,7,42)(5,48,8,43)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,34,14,24)(2,35,15,25)(3,31,11,21)(4,32,12,22)(5,33,13,23)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(61,66)(62,70)(63,69)(64,68)(65,67)(71,76)(72,80)(73,79)(74,78)(75,77) );

G=PermutationGroup([[(1,49,9,44),(2,50,10,45),(3,46,6,41),(4,47,7,42),(5,48,8,43),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75)], [(1,34,14,24),(2,35,15,25),(3,31,11,21),(4,32,12,22),(5,33,13,23),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,71,51,61),(42,72,52,62),(43,73,53,63),(44,74,54,64),(45,75,55,65),(46,76,56,66),(47,77,57,67),(48,78,58,68),(49,79,59,69),(50,80,60,70)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(21,26),(22,30),(23,29),(24,28),(25,27),(31,36),(32,40),(33,39),(34,38),(35,37),(42,45),(43,44),(47,50),(48,49),(52,55),(53,54),(57,60),(58,59),(61,66),(62,70),(63,69),(64,68),(65,67),(71,76),(72,80),(73,79),(74,78),(75,77)]])

C42:D5 is a maximal subgroup of
C42:3F5  D10.5C42  C42.243D10  D10.7C42  C42.185D10  C42:D10  C42.30D10  C42.31D10  C4xC4oD20  C42.277D10  D5xC42:C2  C42.188D10  C42:10D10  C42.93D10  C42.94D10  C42.96D10  C42.97D10  C42.102D10  C42.104D10  C42:11D10  C42.108D10  C42:12D10  C42:16D10  C42.115D10  C42.116D10  C42.122D10  C42.125D10  C42.126D10  C42.232D10  C42.131D10  C42.132D10  C42.133D10  C42.134D10  C42.138D10  C42:18D10  C42.141D10  C42:21D10  C42.144D10  C42.148D10  C42.151D10  C42.155D10  C42.156D10  C42.160D10  C42:24D10  C42.162D10  C42.163D10  C42:26D10  C42.168D10  C42.171D10  C42.174D10  C42.176D10  C42.178D10  (D5xC12):C4  (C4xD15):10C4  (D5xDic3):C4  D30.23(C2xC4)  C42:2D15
C42:D5 is a maximal quotient of
C5:2(C42:8C4)  C5:2(C42:5C4)  C10.51(C4xD4)  C22.58(D4xD5)  D10:2(C4:C4)  C10.54(C4xD4)  C42.282D10  C42.243D10  C42.182D10  C42.185D10  C4xC10.D4  C42:4Dic5  C10.92(C4xD4)  C4xD10:C4  (C2xC42):D5  (D5xC12):C4  (C4xD15):10C4  (D5xDic3):C4  D30.23(C2xC4)  C42:2D15

52 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I···4N5A5B10A···10F20A···20X
order122222444444444···45510···1020···20
size111110101111222210···10222···22···2

52 irreducible representations

dim111111122222
type++++++++
imageC1C2C2C2C2C2C4D5C4oD4D10C4xD5C4oD20
kernelC42:D5C4xDic5C10.D4D10:C4C4xC20C2xC4xD5C4xD5C42C10C2xC4C4C2
# reps1122118246816

Matrix representation of C42:D5 in GL3(F41) generated by

100
090
009
,
3200
01122
02830
,
100
078
04040
,
4000
018
0040
G:=sub<GL(3,GF(41))| [1,0,0,0,9,0,0,0,9],[32,0,0,0,11,28,0,22,30],[1,0,0,0,7,40,0,8,40],[40,0,0,0,1,0,0,8,40] >;

C42:D5 in GAP, Magma, Sage, TeX

C_4^2\rtimes D_5
% in TeX

G:=Group("C4^2:D5");
// GroupNames label

G:=SmallGroup(160,93);
// by ID

G=gap.SmallGroup(160,93);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,362,50,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^5=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<